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Overview: 
The static nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where 
an attacker wants to compromise a remote system running a specific application. The attacker need only 
find one vulnerability in a local copy of that application. Since all copies of that application are identical 
and static, the attacker can leverage that vulnerability to exploit the application on a remote machine. 
Worse yet, the same vulnerability can be exploited to attack thousands or millions of other machines that 
run the same application. Also, since the internals of the system changes little over time, the same attack 
is likely to succeed for a long time. The situation is exacerbated by the fact that any reconnaissance 
information collected on the system by the attackers will also be valid for a long time. This creates an 
imbalance in favor of attacks. 

A promising approach to cyber resilience that attempts to rebalance the cyber landscape is known as 
cyber moving target (MT) (or just moving target) techniques. Moving target techniques change the static 
nature of computer systems to increase both the difficulty and the cost (in effort, time, and resources) of 
mounting attacks. Simply put, these techniques turn systems into moving targets that will be hard for 
cyber attackers to compromise. MT techniques leverage randomization, diversity, and dynamism to 
achieve resilience. Randomization refers to introducing non-determinism to the internal structures of a 
system while preserving its correct functionality; diversity refers to introducing heterogeneity among 
computer systems so that they cannot be compromised by the same attack; and dynamism refers to 
changing the properties of a system over time so that the same attack cannot compromise it in the future. 
MT technique can implement any subset of these three goals. 

In order to understand the different domains of MT techniques, we focus on the component that is 
actually subject to movement. For ease of design and implementation, a computer often consists of 
multiple layers of software and hardware, commonly referred to as the software stack although the stack 
includes the hardware elements as well. Each layer relies on other layers for its proper operation and 
function.  

Figure 1 presents one representation of such a layered design. At the very bottom of the software stack is 
the hardware components of the machine. These include the processor, the motherboard, the memory 
cards, and other peripheral devices and cards such as the sound card, video card, etc. Above this layer 
resides the operating system which is responsible for controlling and managing the hardware components 
and providing an abstraction of them to the application. The abstraction provided by the operating system 
is the key in interoperability and compatibility of the applications because the applications do not 
typically interact directly with the hardware components; rather, they use the provided operating system 
abstraction. The abstraction layer, which is the interface that the operating system provides to the 
application, is sometimes referred to as the runtime environment. The hardware and operating system of a 
machine are collectively called the platform. Above the operating system reside the applications which 



are used to process and present data. The data itself and its representation can be considered a layer atop 
the application. Finally, many machines in today’s systems are not isolated devices, and in fact, they are 
connected to other machines through a network. In general, five domains of MT techniques address 
dynamically changing the abovementioned software stack layers. 

 

 

Figure 1: Different domains of cyber moving target techniques 

 

Dynamic Network: 
Techniques in the dynamic network domain change the properties of the network to complicate network-
based attacks. One such technique frequently changes the Internet protocol (IP) addresses of the machines 
in an enterprise network [9]. This IP rotation technique can thwart rapidly propagating worms that use a 
fixed hit list of IP addresses to infect a network. Another technique, known as an overlay network, creates 
dynamically changing encrypted tunnels (i.e., encrypted communication connections over public 
networks). 

Dynamic networks is an appealing class of techniques to reduce an adversary’s ability to conduct 
reconnaissance on a network, map a defended network, or select specific hosts for a targeted attack. 
However, these techniques face two important obstacles to deployment.  

First, because many dynamic network techniques lack a well-articulated threat model, it may be unclear 
to network defenders what threat needs to be mitigated and thus how best to deploy the defensive 
technique. Consider a technique that isolates a small group of machines from the larger network (or 
Internet). If hosts within the isolated network can still communicate to hosts beyond the isolated network, 
protected hosts may be vulnerable to any number of client-side attacks that exploit vulnerabilities within 
the unprotected hosts’ web browsers or document viewers. For example, targeted spear phishing 
(fraudulent email messages that try to elicit information such as passwords to Internet accounts) could 



penetrate a protected network through the network’s connections to unprotected hosts. Dynamic network–
based MT techniques do not address these types of attacks. 

Second, many dynamic network techniques introduce randomization into the fundamental protocols that 
are used on the Internet. However, the effectiveness of this randomization at stopping attacks is unclear. 
Suppose an MT technique randomizes network identifiers (such as an IP address). If service discovery 
protocols such as the domain name service (DNS) are used to convert human-readable domain names to 
machine-readable IP addresses, these services may undo any potential security benefit obtained through 
the MT technique itself, provided that the attacker can issue DNS queries. 

Dynamic Platform:  
The dynamic platform domain consists of cyber defensive techniques that dynamically change the 
properties of the computing platform. Consider a system that runs a given application on top of multiple 
operating systems and hardware architectures. For example, the application can run on top of a platform 
consisting of the Fedora operating system and x86 processor architecture or a different platform 
consisting of the FreeBSD operating system and ARM processor architecture. Such a system can be 
implemented, for instance, by compiling the application to different processor architectures and 
implementing a platform-independent checkpointing mechanism to preserve the current state of the 
application during platform changes [4]. Such a system constitutes a dynamic platform moving target 
technique. Other examples of dynamic platform techniques include a voting system that runs an 
application on top of different platforms, each platform voting on the output of the system [5], or a system 
that randomizes the internals of the operating system that are unimportant for the correct functionality of 
the application. 

The major benefit of the dynamic platform techniques is preventing platform-dependent attacks. Crafting 
a successful exploit against a system usually requires that an attacker consider the exact platform of that 
system. This is similar to the process of developing software for a given system. As a result, by changing 
the computing platform, an MT technique can mitigate attacks that are platform-dependent. An attacker 
can develop a stronger attack by incorporating different exploits against different platforms, but this will 
increase the cost and workload of the attack, which is the main goal of MT techniques. Note that dynamic 
platform techniques cannot mitigate attacks that target a higher-level application logic flaw and do not 
depend on the platform. For example, SQL injection attacks [cite], which are attacks that inject a 
malicious command into a database application using a flaw in the high-level logic of the application, are 
typically not mitigated by dynamic platform techniques. 

While dynamic platforms MT techniques offer the potential to defeat platform-dependent attacks, they 
can increase the complexity of the overall system, are generally difficult to effectively manage, and can 
actually be detrimental to security if used inappropriately [6]. Perhaps the greatest challenge from a 
system complexity and management perspective is the synchronization of application state across the set 
of diverse platforms. Examples of such program state could include open data files, user input from a 
keyboard or mouse, or network traffic that needs to be correctly delivered to a specific running process 
(while correctly maintaining connection-specific state in the kernel). Synchronizing these resources 
among the dynamic platforms in real-time requires a complex management infrastructure that can migrate 
state with speed and agility. Reasoning about the correctness of this management infrastructure may be 



challenging in practice, but at the very least, the necessity to keep program state synchronized across 
several distinct platforms increases system complexity considerably.   

Another potential limitation of dynamic platforms is that requiring multiple distinct platforms can actually 
increase the attack surface of the system. Attack surface refers to components of the system that are 
exposed to a potential attacker and can be the target of the attack. Suppose that a dynamic platform MT 
technique migrates an application between three platforms: Linux, Windows, and Mac. If the attacker has 
an exploit that works on the Windows host, the attacker simply needs to wait until the application 
migrates to the Window host to launch the exploit and compromise the application. Making the program 
migration less predictable can help, provided that the attacker cannot reliably guess which platform is 
running the application. As a result, dynamic platform techniques are only effective in cases where the 
diversity is in-series and not in-parallel. In other words, the successful attack must require all platforms 
to be compromised, not any platform. For instance, if the attack requires a long time to succeed (long 
duration disruption of service), a dynamic platform can be helpful. Otherwise, for short-duration attacks, 
it can be detrimental to security.  

 

Dynamic Runtime Environment: 
Techniques in the dynamic runtime environment domain dynamically change or randomize the 
abstraction provided by the operating system to the applications, without hindering any important 
functions of the system. One of the most important abstractions in a computer system is memory. For 
various reasons including isolation of different applications, compatibility, and interoperability, memory 
locations presented to an application in most modern computer systems is not a direct representation of 
the actual physical memory. Rather, a redirection is applied by the operating system in an abstraction 
known as the virtual memory. A well-known dynamic runtime environment MT technique randomizes 
what addresses in the virtual memory are used by the application. The technique is typically referred to as 
Address Space Layout Randomization (ASLR) [7] and is implemented in most modern operating systems 
including Linux, Windows, Mac OSX, Android, and iOS. By randomizing the addresses, ASLR makes 
exploit development more difficult for an attacker because attackers do not know where to place their 
malicious code on the system. Other dynamic runtime environment techniques include those that change 
the processor instruction encoding (a.k.a. Instruction Set Randomization -- ISR), or finer-grained variants 
of ASLR in which smaller regions of memory are randomized. 

Dynamic runtime environments are among the most practical and widely deployed MT techniques. Yet, 
despite their successes, there are two important weaknesses than can allow an attacker to circumvent the 
defense.  

First, ASLR requires memory secrecy. That is, if the contents of memory are disclosed or leaked to an 
attacker, the attacker may be able to use this information to defeat ASLR. Such memory disclosures are 
possible via separate vulnerabilities (known as buffer over-read vulnerabilities), where the contents of 
memory are read beyond the allowed boundary, disclosing how memory has been randomized. Without 
strict memory secrecy, an attacker can still circumvent the protections provided by ASLR to launch code 
injection or code reuse attacks (e.g., ROP) [cite]. 



Second, the granularity of randomization in many ASLR implementations is low, which reduces the 
overall protection provided by the technique.  For example in Linux, only the start location of certain 
memory regions is randomized by default. The executable program code itself is often not compiled with 
ASLR support. As such, this section of the program’s memory is not protected and can be a vector of 
exploitation. 

 

Dynamic Software: 
Techniques in the dynamic software application domain (or simply the dynamic software domain) 
randomize or diversify the internals of the software application. One technique from this domain is called 
the multi-compiler [8], which creates different versions of software executables (binaries) from the same 
source code (e.g. written in C) that perform the same function, but are different internally. The different 
internals can arise from different actual processor instructions that are used during the compilation 
process or using the same instructions in different locations inside the executable. Note that a given copy 
of the executable with a given set of internals may never change, but various machines in an enterprise 
run different executables. In other words, this technique can create spatial diversity (diversity among 
many machines) as opposed to temporal diversity (diversity of one machine over time). The major benefit 
of dynamic software techniques is to mitigate the impact of large-scale attacks. If an exploit is crafted 
against a given variant of the executable, it will have a small chance of working against other variants of 
that executable. Hence, an attacker cannot compromise many machines at once. This is contrary to many 
existing systems where if an attacker develops malware, it can successfully compromise millions of 
machines running the same target application. In recent sophisticated attacks, attackers reuse parts of the 
benign code of the target application itself to achieve malicious behavior. Known as code reuse attacks or 
return-oriented programming (ROP) attacks [9], these attacks can successfully bypass existing defenses 
that detect or stop foreign pieces of code in order to mitigate attacks. Dynamic software techniques can be 
effective against such attacks by making the benign application code diverse. 

Dynamic software techniques often use specialized compiler techniques to produce executable software 
variants with different and unpredictable memory layouts. These variants could use padding to make the 
size of memory regions unpredictable, or insert No-operation (NOP) instructions within executable code 
that do not perform any operation, but can make code reuse attacks harder to launch because they change 
the location of other instructions. These techniques, however, suffer from a variety of weaknesses. 

First, recompilation to produce a software variant requires access to a program’s source code, and is not 
compatible with proprietary, third-party software for which source code is not made available. 
Furthermore, reasoning about the correctness of the compiled variant can be challenging, since one cannot 
simply verify a cryptographic measurement of the executable file to ensure that the code has not been 
(maliciously) modified.  

Second, software is often compiled with special optimization flags that reduce the space and/or 
computational complexity of the compiled binary code. MT techniques that explicitly compile the 
software to introduce randomness in the memory layout may not be compatible with space saving or 



compute-time saving optimization passes performed by the compiler. Consequently, the dynamic 
software is unlikely to maintain the same performance properties as the ideally optimized compiled code. 

Third, dynamic software techniques that use execution monitors to instrument and compare multiple 
versions of an executable introduce significant performance costs. For example, if an MT technique has 
two variants, there is at least a 2x performance cost relative to native execution of the application (in 
terms of processor, memory, and I/O utilization).  This cost may be reasonable for protecting one or two 
applications where the highest degree of security is required, but likely does not scale to protect all 
applications running on a host. 

Fourth, information leakage attacks can also be used against dynamic software techniques (similar to 
dynamic runtime environment techniques) to bypass them. If attackers can leak how an executable has 
been diversified, they can attack it as if it was not diversified at all.  

Dynamic Data: 
Techniques in the dynamic data domain change the format, syntax, representation, or encoding of the 
application data to make attacks more difficult. In this domain, the diversity can be temporal or spatial as 
well. One technique in this domain dynamically changes the representation of the user identifier (UID) in 
Linux operating systems. This identifier is used to determine what access rights a user has. One type of 
attack tries to increase the access level of a user in order to gain access to otherwise sensitive resources by 
changing the UID value to that of an administrator. This type of attack is an example of a larger class of 
attacks known as privilege escalation attacks. The UID randomization dynamic data technique can 
mitigate such an attack. 

Dynamic data techniques offer the promise of protecting data from theft or unauthorized modification, but 
these techniques also suffer from two important weaknesses.  

First, there can be a lack of diversity in the number of acceptable data encodings. For example, to encode 
binary data, one could use base-64 or hexadecimal which are both commonly used in practice, but there 
are few other accepted standards for data encoding. Additional non-standardized encodings are certainly 
possible, but may increase the complexity of interoperating with other system components. 

Second, the use of additional data encodings may also increase the attack surface of the software. For 
each encoding type, the software must have the proper parsing code to encode and decode the data. The 
additional parsing code itself could have security-relevant software bugs.  

Summary: 
One way of understanding the benefits of MT techniques is by looking at the steps of a cyber attack that 
they are trying to mitigate. In order to successfully compromise a system, an attacker must progress 
through several steps, as depicted in Table 1. The first step is reconnaissance during which an attacker 
collects information about the target. The second step is accessing the victim during, which the attacker 
collects enough information about the configurations, applications, and software versions that are running 
on the target machine in order to develop an attack against it. During the third step, the attacker develops 
an exploit against a vulnerability in the target machine. Then the attack is launched in the next step which 



may include, for example, a malicious network packet sent to the target machine or luring the user to click 
on a maliciously crafted link or using a malicious thumb drive. After the attack is launched and verified, 
the attackers may take additional steps to maintain their foothold on the target machine (i.e., persistence). 
Together these steps are referred to as the cyber kill-chain. Table 1 illustrates the main step of the cyber 
kill-chain that each domain of MT techniques tries to mitigate. 

Table 1: Attack phases disrupted by each MT domain. 

MT Domain 
Attack Phases 

Reconnaissance Access 
Attack 

Development 
Attack 
Launch 

Persistence 

Dynamic Network      

Dynamic Platforms      

Dynamic Runtime Env.      

Dynamic Software      

Dynamic Data      

 

Effectiveness of Moving Target Techniques 

Weaknesses of existing MT techniques motivated us to develop a set of criteria for evaluating their 
effectiveness. By studying attacks against well-known MT techniques we identified three major problems 
that contribute to the weaknesses of such techniques. First, in some cases the dynamic change in the 
system is too slow. In such cases, an attacker can observe the current state of the system using 
information leakage attacks, craft an attack against the current state, and compromised the system by 
launching the attack, all within the interval between two system changes. Second, in some other cases, the 
space of movement is too small. For example, consider a system that has two possible states. While 
attackers may not know the current state of the system, they will have 50% chance of success in attacking 
the system by pure guessing. In many MT techniques, attackers can also reduce the amount of uncertainty 
they are facing by quickly testing every possibility. This is also known as the brute force attack. Third, in 
some MT techniques, parts of an attack surface are dynamic, whereas other parts remain static. The static 
parts become a target of attack because they do not present any uncertainty for the attacker. 

Using the above insights, we developed three criteria for evaluating an MT technique: timeliness, 
unpredictability, and coverage, as define below. 

 Timeliness: The extent to which a movement can be applied between the time at which an 
attacker makes an observation and time at which an attack is completed. 

 Unpredictability: The extent to which the outcome of current or future movements of the attack 
surface are indeterminable by an attacker. 

 Coverage: The extent to which all elements of a defended attack surface are subject to 
movement. 



Timeliness evaluates how fast the system moves. The actual time between movements depends 
on the attack model of concern for the technique. Hence, the definition of timeliness considers 
the possible attacker observations. In fact, an optimal MT technique should tie movement events 
to possible actions that can leak information to an attacker [cite]. 

Unpredictability evaluates the uncertainty faced by an attacker. A quantitative metric for 
unpredictability is entropy.  

Coverage evaluates whether or not the MT technique moves every element of an attack surface. 
If some parts of the attack surface remain static, they can become the target of attacks. 

We have also developed rigorous, quantitative metrics for these criteria [11], the discussion of 
which is beyond the scope of this book chapter. We use these metrics to evaluate MT techniques 
and analyze the protection they provide against cyber attacks. 

 

Practical Considerations 
 

When deciding to deploy an MT technique, there are many practical issues to consider. The defender 
should understand the potential performance impact of the MT technique on the system. Many MT 
techniques offer security against strong adversaries, but incur performance penalties, which could be 
prohibitively high depending on the application. Understanding the performance requirements of the 
system and the expected performance costs of the MT technique can help defenders make the right 
decision about deploying MT defenses. 

Moreover, the defender should understand the effectiveness of the MT technique before it is deployed. 
Techniques that offer high effectiveness against realistic attack models should be selected before those 
that suffer from false positives or negatives, or those that protect against an unrealistic threat. Hence, an 
important part of this consideration is having a well-defined attack model that describes the exact types of 
attacks that are of concern and that are relevant to the system being protected. 

Finally, the defender should understand the composibility of MT and non-MT techniques. MT techniques 
do not solve all security problems, but rather are best suited toward defending against specific threat 
models. For example, a defender may want to defend against code injection attacks using ASLR. But to 
achieve defense-in-depth, signature-based network monitoring can be used to examine network traffic in 
real time and drop all packets that appear to contain code injection payloads. Understanding how well MT 
and non-MT techniques can be composed to achieve the necessary protection is paramount to effective 
cyber resilience.  



Future Directions 
Future work in this area will focus on multiple directions. In designing new MT techniques or evaluating 
existing ones, it is imperative to analyze whether or not the additional complexity created by the 
randomization or diversification of the system’s components is actually exposed to a potential attacker. 
As discussed earlier, many MT techniques create complexity in a system component, but when attacking 
the system, an attacker can avoid or bypass the complexity. This is usually achieved through information 
leakage attacks or attacks that work regardless of the specific internals of a component (e.g. higher level 
logic flaws in the application). The flip side of this challenge is to ensure that the complexity is not 
exposed to the system’s operators and maintainers. Ease of deployment, operation, and maintenance are 
important for widespread deployment of cyber defensive techniques.  

Furthermore, additional research is needed in the area of evaluation and assessment of MT techniques. 
For cyber security to transition from a craft to a science, it is important to have concrete, meaningful, and 
repeatable evaluation methods. An imperative part of evaluation is developing metrics that define 
measurement units of security and can be used to evaluate the absolute security offered by an MT 
technique and a comparative assessment of it against other techniques. Meaningful and objective 
evaluation of MT techniques can benefit from a variety of evaluation approaches including abstract 
analysis, modeling and simulation, testbed experimentation, and real-world measurements in operational 
systems. 

Finally, an important future direction for MT research is to examine, study, and evaluate the 
composability of MT techniques with other MT and non-MT defenses. Cyber defenses in general and MT 
techniques specifically, do not provide a “silver bullet,” protecting against every known cyber attack. As a 
result, in practice, multiple defenses should be combined to provide adequate protection. Understanding 
the impact of these defenses on each other, and the composability challenges that arise from them, is an 
open research area.  
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